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ABSTRACT: In the context of synthetic biology, model
generation is the automated process of constructing biochemical
models based on genetic designs. This paper discusses the use
cases for model generation in genetic design automation (GDA)
software tools and introduces the foundational concepts of
standards and model annotation that make this process useful.
Finally, this paper presents an implementation of model
generation in the GDA software tool iBioSim and provides an
example of generating a Systems Biology Markup Language
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(SBML) model from a design of a 4-input AND sensor written in the Synthetic Biology Open Language (SBOL).
KEYWORDS: SBOL, SBML, standards, modeling, genetic design automation

iochemical modeling is the process of constructing a

mathematical description of a biochemical system. Within
the fields of systems and synthetic biology, a great deal of effort
has gone into the development of software tools' ™ for
biochemically modeling both natural and synthetic biological
systems. These tools have enabled their users to construct,
simulate, and otherwise analyze biochemical models of
biological systems, with applications ranging from hypothesis
testing to engineering design.

The latter application has been particularly emphasized in
synthetic biology, where many biochemical modeling tools’ '
have been developed for the purpose of genetic design
automation (GDA).'® These tools typically automate the
process of generating quantitative models from designs that
contain data on the structure and function of genetic
components, such as component types, genetic sequences,
regulatory interactions, and performance measurements. Most
of these tools generate composite models based on the
composition of previously constructed models for genetic
components or larger circuits, but some tools, such as
SynBioSS® and GenoCAD,"”"” include the ability to generate
models based on components imported from the Registry of
Standard Biological Parts.'® None of these tools, however,
generate models from a standardized domain-specific language
for genetic designs. It is this process of model generation from a
standardized language, and its specific implementation in the
GDA software tool iBioSim,'? that form the subject of this
paper.

Besides saving time through automation, model generation
tools can be used to facilitate interdisciplinary collaboration.
For instance, these tools can be used by a synthetic biologist
who lacks expertise in applied mathematics to generate models
based on his or her genetic designs. The generated models can
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then be analyzed by an engineer whose background is in
mathematics as opposed to biology. In this way, the audience
for a biologist’s qualitative designs is expanded to include an
engineer who is interested in quantitative models.

In addition, the use of model generation tools can facilitate
the comparison of models from different research groups. Since
the models generated by these tools are based on genetic
designs, there exist specific mappings from a given design to the
models generated from the design. If these mappings are
documented during the model generation process, then it
becomes possible to more formally compare different models
that are generated from the same genetic design.

These collaborative benefits, however, are not possible
without the incorporation of standards for genetic design and
model annotation into model generation tools. The rest of the
introduction briefly introduces these concepts and the roles
that they play in model generation.

Standards. There are at least two qualities of good
standards that make model generation tools possible and
enhance their efficacy. The first of these qualities is data
restriction. Because standards require that data be written in a
restricted format, it becomes possible for model generation
tools to leverage well-defined mappings between standards for
genetic design and biochemical modeling. The second quality
of good standards is openness, which has implications for the
uptake of standards within a community. When standards are
free for use by all interested parties, it is easier for these
standards to spread and gain traction within the community as
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Figure 1. Model generation process in iBioSim. The structure of the SBOL module definition for a genetic inverter (left) informs the construction of
a SBML model annotated with SBOL elements (middle). Following the construction and annotation of the model, its default parameters must be
tuned or fitted to experimental data to produce desired behaviors during simulation (right). All DNA component symbols in this and subsequent

figures adhere to the SBOL Visual standard®' and have been created using the Pigeon web application.’
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a whole. Widespread use of standards enhances the
collaborative benefits of model generation tools because it
increases the number of potential users for these tools and the
size of the potential audience for users’ generated models.

While most of the model generation tools for synthetic
biology support export of standardized models, most notably
Systems Biology Markup Language (SBML)***' models, far
fewer support import of standardized genetic designs, such as
those written in the Synthetic Biology Open Language
(SBOL).**** In the case of SBOL, this is partly due to the
fact that the standard has lacked the means to represent the
function of genetic designs in addition to their structure.
Recently, however, a proposal has been made to supplement
the genetic components and sequences of SBOL with module
definitions that group functional components on the basis of
their intended function and assert the component interactions
required for this function.**

As standards for genetic design continue to develop and
incorporate engineering concepts for design organization, such
as hierarchy and modularity, it becomes necessary for model
generation tools to support these standards and map designs
written in them to quantitative modeling standards that are
capable of encoding similar concepts. Without the use of
standards that encode hierarchy and modularity, different
model generation tools cannot exchange information on the
higher-order organization of models. To address this problem,
the model generation methodology presented in this paper
focuses on generating hierarchical SBML models*® from genetic
designs that adhere to an updated proposal for the next version
of SBOL.

Model Annotation. The primary use of model annotation
is to associate the elements of a model with data that cannot
otherwise be represented in the format or standard in which the
model is written. In the context of model generation for
synthetic biology, model annotation can be thought to have at
least two use cases.

In the first use case, the purpose of a model annotation is to
indicate the provenance or origin of a generated model
element. For example, when generating SBML from SBOL, the
species and reactions of a SBML model can be annotated with
SBOL elements from the functional layer of design, such as the
functional components within a SBOL module definition and
the interactions in which they participate. In this way, a record
is kept of which elements in a generated biochemical model
correspond to which elements in its source genetic design,
which can later be used to compare models generated from the
same design.
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In the second use case, the purpose of a model annotation is
to indicate the molecular identity of a model element that
represents or is encoded by a biochemical structure. For
example, the species of a SBML model can be annotated with
SBOL elements from the structural layer of design, such as
component definitions for protein, RNA, and DNA compo-
nents that link to their genetic sequences. This data can be
particularly useful for matching molecular inputs and outputs or
avoiding cross-talk when composing models for genetic circuits
or metabolic pathways. In addition, this data can be used by
sequence generation tools to infer composite genetic sequences
from the cause-and-effect organization of the annotated
model.***’

The model generation methodology presented in this paper
annotates generated SBML with SBOL to accomplish both of
these use cases. In addition, since the elements of SBOL
include terms from ontologies, this SBML-to-SBOL annotation
scheme adheres as close as possible to the standard set forth by
the MIRIAM project™® for annotating systems biology models.
An ontology is controlled vocabulary that defines terms as well
as the relationships between terms. Ontologies used by SBOL
include the Sequence Ontology,29 for providing roles in genetic
component definitions (such as promoter and terminator) and
the Systems Biology Ontology (SBO),* for providing types of
biochemical interactions and roles in these interactions (such as
activation, repression, activator, and repressor).

B RESULTS AND DISCUSSION

Figure 1 illustrates the process of model generation in iBioSim.
As represented by the first arrow in this diagram, model
generation is the construction of a quantitative SBML model
based on the structure and content of a qualitative SBOL
module definition. During this construction, the biochemical
species and reactions of the generated SBML model are also
annotated with elements from the SBOL module definition in
order to document the provenance of the model and the
molecular identities of its species. Finally, as represented by the
second arrow, the parameters of the generated SBML model
can be tuned or fitted to experimental data to produce accurate
behaviors during simulation.

Since the proposal for the next version of SBOL is not
capable of encoding quantitative parameters, the rate laws of
the SBML reactions generated by iBioSim are populated with
default parameters that must be customized using iBioSim or
another SBML-compatible modeling tool. Table 1 lists these
default parameters and their current values. In the future, SBOL
could be extended with the capacity to store data on
quantitative parameters and measurements. Storing this
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Table 1. Default Parameters for Rate Laws of Generated
SBML Reactions

parameter symbol  value units
rate of degradation ky 0.0075 1/s
stoichiometry of production n, 10 unitless
open complex production rate k, 0.05 1/s
basal production rate ky 0.0001 1/s
activated production rate k, 0.25 1/s
promoter count n, 2 molecule
RNA polymerase binding K, 0.033 1/molecule
equilibrium
activated RNA pol. binding K,, 1 1/molecule
equilibrium
RNA polymerase count n, 30 molecule
repression binding equilibrium K, 0.5 1/molecule
activation binding equilibrium K, 0.0033 1/molecule
stoichiometry of binding n 2 unitless
forward noncovalent binding rate k, 0.05 1/(molecule-sec)
noncovalent binding equilibrium K, 0.05 1/molecule
reverse noncovalent binding rate k,, 1 1/sec

information would provide a firmer foundation for GDA tools
to generate different mathematical models for different design
tasks that nevertheless conform to the same basic data set.

The derivation of the rate laws for the reactions generated by
iBioSim is based on the application of the law of mass action
and model abstraction techniques, such as operator site
reduction®*** and quasi-steady-state approximation.***® While
a more detailed description of this type of derivation can be
found in the literature,”” a short summary is included here.
Briefly, this derivation assumes that the noncovalent binding of
transcription factors (TFs) to DNA occurs on a faster time
scale than transcription, translation, and protein degradation,
such that the complexes formed between TF species and DNA
are at or near their equilibrium levels at all times. This
assumption is typically made to simplify genetic circuit models
for more tractable analysis and efficient simulation. As a
consequence of this assumption, the models generated by
iBioSim do not include reactions for TF species binding to
DNA, nor do they include the complexes between TFs and
DNA that are produced by these reactions. Instead, these
complexes are replaced in the mass conservation laws for each
promoter with the product of the amounts for the promoter, its
binding TF species, and equilibrium binding constant. This
allows the rate of genetic production (transcription and
translation) from each promoter to be rewritten as a fraction
in which each term of the denominator and numerator
represents a different state of the promoter. As seen in Figure
2, when the amount of a repressor species increases, the
denominator increases and the rate of genetic production from
the promoter is eventually minimized. When the amount of an
activator species increases, however, both the numerator and
denominator increase and the rate of genetic production from
the promoter is eventually maximized.

Given that the form of any model is generally only valid
under certain conditions, model generation tools need to be
flexible enough to abstract between different forms of model as
circumstances dictate. iBioSim implements a range of
techniques for automated model reduction and expansion
that may be applied to a generated model to either increase or
decrease its level of abstraction. For example, if a user decides
that the noncovalent binding between TF species and small
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Figure 2. Mapping from SBOL to the initial amounts and rate laws for
generated SBML species and reactions, respectively. Each protein,
complex, or small molecule (top) is mapped to a species with an initial
amount of zero. If a protein, complex, or small molecule is degraded
(second from top), then its corresponding species is assigned as a
reactant for a reaction with no products. By the law of mass action, the
rate law for this degradation reaction is first order. Noncovalent
bindings that include a complex (third from top) are mapped to a
reversible reaction with the appropriate complex species as its product
and the TF or inducer species that form the complex as its reactants.
When the amounts of the latter species are increased, the rate of
complex formation is increased until an equilibrium is achieved with
the negative rate law term for the reverse reaction. Finally, all
constitutively expressed, repressed, and activated genes (bottom three)
are mapped to reactions that only have products. These genetic
production reactions are modified by the appropriate TF species and
have more complex fractional rate laws resulting from operator site
reduction. The rate laws for constitutive and repressed genes capture
the ratio of RNA polymerase-bound promoter states to all other states,
while those for activated genes capture the ratio of polymerase-bound
and activator-polymerase-bound states to all other states. These ratios
are then multiplied by the gene copy number (promoter count),
equilibrium binding of RNA polymerase, and maximum rate of
transcription initiation (open complex production) to determine the
rate of genetic production.
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molecule inducer species occurs on the same fast time scale as
TF species binding to DNA, then iBioSim can eliminate the
relevant reactions and add equivalent algebraic expressions to
the rate laws of the appropriate genetic production reactions.>*

One immediate application of model generation in iBioSim is
the creation of libraries of simulatable genetic designs that can
serve as inputs to genetic technology mapping. Genetic
technology mapping is the process of selecting genetic
components from a library to meet an abstract behavioral
specification, an important application of GDA
tools.”' >3 715383 Iy iBioSim, this process involves automati-
cally selecting one or more SBOL-annotated SBML models
from a design library and composing them to optimally satisfy a
SBML model specification for an abstract genetic circuit.*’
Thanks to model generation, the concrete genetic circuit design
resulting from genetic technology mapping contains a
composite SBML model that can be simulated to verify that
the theoretical function of the design is correct.

Example: 4-Input AND Sensor. In order to demonstrate
the scale and potential application of model generation in
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Figure 3. Visualization of the SBOL for the 4-input AND sensor. Not pictured is the degradation of each noninput component. Each sensor
constitutively expresses a TF that interacts with a small molecule inducer. In the case of the Ara and 30C6 sensors, the inducer enables the TF to
activate production of the output protein. For the IPTG and aTC sensors, however, the inducer sequesters the TF and relieves repression of output
protein production. When all four inducers are present, the sensors produce a combination of chaperone and TF proteins. These proteins then bind
to form complexes that either activate production, as in the case of the IpgC-MxiE AND gate, or alternately sequester an activator TF and relieve its
sequestration, as in the case of the ExsC-ExsDA AND gate. Finally, these AND gates produce a chaperone and a TF, respectively, that form a
complex and activate production of RFP from the SicA-InvF AND gate.
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Figure 4. Simulation results for the 4-input AND sensor. Each time series is the average of 10 stochastic simulation results performed using the
Gillespie algorithm*® and represents the amount of RFP produced for a particular combination of low and high inducer inputs, where low is zero
molecules of inducer and high is 60 molecules. The red time series is the amount of RFP produced when all four inducer inputs are high.

iBioSim, this section presents an example of generating a SBML
model from the SBOL module definitions for four sensors
connected to a 4-input AND gate, which is among the largest
genetic circuits ever constructed.*’ The module definitions
shown in Figure 3 differ slightly from their original conception
in ref 41, in that each module definition is organized to have
proteins as its input and outputs, rather than transcription
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signals of RNA polymerases per second. The former is more
conducive to generating the form of genetic circuit model that
iBioSim is best suited to analyze, one in which submodels
communicate via varying amounts of protein. In principle,
however, the behavior resulting from a polymerase operations
per second (PoPs) model is equivalent. In the future, iBioSim
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could be extended to provide advanced analysis options, such as
Markov chain analysis,** for both types of model.

Figure 4 displays the simulation results for the SBML model
generated from the SBOL module definitions describing the 4-
input AND sensor. Each time series in these results is the
average of 10 stochastic simulation runs and captures the
behavior of the AND sensor in response to a different possible
combination of low and high inducer inputs. As expected, there
is an order of magnitude difference in expression between the
case when all inducer inputs are high and all other cases. This is
not dissimilar from the experimental results in ref 41, though
the expression for some low input combinations is less leaky in
the model. Greater agreement and predictive power could be
obtained by independently measuring the parameters of the
model or fitting them to a subset of the relevant experimental
data. Ultimately, these results show that model generation and
simulation in iBioSim can be used to reproduce behavior
observed in the lab for recent artificial gene networks.

Discussion. The model generation methodology presented
in this paper enables users of iBioSim to generate quantitative
SBML models from qualitative SBOL module definitions.
Furthermore, the generated SBML models are annotated with
their source SBOL in order to tightly couple these quantitative
and qualitative descriptions of genetic function and structure.
The end result is a library of simulatable genetic designs that
have the potential to be exchanged between standard-compliant
GDA software tools.

It is important to note, however, that this approach to model
generation captures only one of many possible mappings
between SBOL and various standards for biochemical
modeling. In particular, this approach specifies a mapping
between SBOL and a specific form of genetic circuit model
written in SBML, one that is suited to simulation as a system of
ordinary differential equations (ODEs) or stochastic processes.
SBML, however, is capable of specifying other types of models,
such as algebraic models for the analysis of metabolic pathways.
In addition, there exist other modeling standards besides
SBML, including those expressly developed for modeling
biology, such as CellML,** and scripting/programming
languages commonly applied to modeling biology, such as
MATLAB* and Python.

In time, model generation must grow to accommodate other
possible mappings between standards for genetic design (most
notably SBOL) and biochemical modeling. In order to facilitate
this growth, further research is necessary to build upon previous
model generation formalisms, such as the grammars used by
GenoCAD."* Products of this research would include methods
for automatically comparing biochemical models written in
different standards, provided that these models are generated
from the same genetic design. GDA tools could be developed
that enable users to create and store new mappings from SBOL
to different biochemical modeling standards. Tools and
methods such as these would help to democratize model
generation and involve larger segments of the synthetic biology
community in its long-term growth.

B METHODS

The procedure for automatically generating annotated SBML
from SBOL follows the steps outlined below. Note that the
expected SBOL conforms to a recently proposed data model.**
This data model has undergone some minor revisions that will
be detailed in the forthcoming specification for the next version
of SBOL. For the purposes of model generation, the most

significant revisions are that the Module and ModuleInstantia-
tion classes have been renamed to ModuleDefinition and
Module, respectively, the Component class has been renamed
to ComponentDefinition, and the Componentlnstantiation
class has been renamed to ComponentlInstance and subclassed
as FunctionalComponent and Component. The latter sub-
classes denote whether a component belongs to a module (the
functional layer of design) or to another component (the
structural layer of design).

In addition, the Port class has been replaced with data fields
on the ComponentInstance and MapsTo (formerly PortMap)
classes. These data fields include an access field that specifies
whether a component instance can be mapped to another
component instance (public or private), a direction field that
specifies whether a component instance is an input, output,
both, or neither, and a refinement field that provides additional
semantics for mappings between component instances. For
example, a mapping may use its refinement field to indicate that
one component instance should be identical to another
(verifyldentical), that one instance takes precedence over
another (useLocal or useRemote), or that two instances should
be considered in combination (merge).

1. For each SBOL module definition in a SBOL document:
(a) Add a SBML model to a new SBML document.
(b) Annotate the SBML model with the SBOL module

definition.

(c) Follow steps 2 through 6.

2. For each functional component i in the SBOL module

definition that is a protein, small molecule, or complex:

(a) Add a species s to the list of species in the SBML
model.

(b) Annotate s with i and the component definition for
i.

(c) If the direction of i is set to “input” or “output”,
add a port to the SBML model, set its ID reference
to s, and label it with the SBO term “input port” or
“output port”.

(d) If the direction of i is set to “input”, mark s as a
boundary condition.

(e) If i is the sole degraded participant in a single
degradation interaction n:

i. Add a reaction r, to the list of reactions in
the SBML model and label it with the SBO
term “degradation”.

ii. Annotate r, with n.

iii. Add a species reference e for s to the list of
reactants for r;.
iv. Annotate e with the participation of i in n.

v. Add a kinetic law of the form below to r,.

rate (r,) = ks (1)
3. For each functional promoter DNA component i:

(a) Add a species p to the list of species in the SBML
model.

(b) Annotate p with i and the component definition
for i.

(c) Add a reaction r, to the list of reactions in the
SBML model and label it with the SBO term
“genetic production”.

(d) Add a modifier species reference e for p to the list
of modifiers for r, and label it with the SBO term
“promoter”.
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(e) For each genetic production interaction n in which
i participates as a promoter, a functional protein
component j participates as a product, and a
functional gene DNA component k is a transcribed
participant:

i. Annotate r, with n.
ii. Annotate e with the participation of i in n.
iii. Add a species reference e’ for the species s
that corresponds with j to the list of
products for r,,.
iv. Annotate ¢’ with the participation of j in n.
v. Annotate s with the component definition

for k.

For each activation or repression interaction n’ in

(f)

functional TF protein component x participates as
an activator or repressor:
i. Annotate r, with n’.
ii. Annotate e with the participation of i in n’.
iii. Add a modifier species reference ¢’ for the
species y that corresponds with x to the list
of modifiers for r, and label it with the SBO
term “repressor” or “activator.”.
iv. Annotate ¢’ with the participation of x in n’.
v. Add y to the set of activators Act(p) or set
of repressors Rep(p).
(g) If r, has no products, remove it from the SBML

model; otherwise, add a kinetic law of the form

which i is a repressed or activated participant and a below to 7.
nk.n Ko
Pre -7 Act(p) = 0

L+ Kot + 2, crep(p) Kis)™

rate (rp) =

nykyn Kon, + nknKon, L€At(p) (Ks,)™

otherwise

I+ KOnr + ZSrGReP(P) (I<rsr)nc + KOanr ZSaEAct(p) (Kasa)nc

4. For each noncovalent binding interaction n in which a
functional complex component i participates as a
complex and a set Comp(i) of one or more functional
small molecule or protein components participate as
ligands:

(a) Add a reversible reaction r, to the list of reactions
in the SBML model, where s is the species that
corresponds with i, and label it with the SBO term
“noncovalent binding”.

(b) Annotate r, with n.

(c) Add a species reference e for s to the list of
products for r,.

(d) Annotate e with the participation of i in n.

(e) Add a set of species references ref(s) to the list of
reactants for r,, where each species reference is for
a species in the set React(s) that corresponds with
Comp(i).

(f) Annotate each species reference in ref(s) with the
corresponding participation in .

(g) Add a kinetic law of the form below to ..

IReact(s)|—2 ’
rate (r,) = kK, ) H s — ks
s’ EReact(s) 3)
S. For each submodule u:

(a) Add a submodel v to the SBML model.

(b) Annotate v with w.

(c) Add an external model definition for the SBML
model that corresponds with the module definition
for u to the list of external model definitions in the
SBML model.

For each maps-to element t of u that maps
between a local functional component j in this
module definition and a remote functional
component k in the module definition for u:
i. If the refinement of t is set to “verify
identical”, “use local”, or “merge”, create a
replaced element g; otherwise, if this

(d)
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«

refinement is set to “use remote”, create a
replaced-by element gq.
ii. If q is a replaced-by element, add it to the
species that corresponds with j; otherwise,
add it to the list of replaced elements for
that species.
Set the submodel reference for g to v and its
port reference to the port for the species
that corresponds with k.
iv. Annotate q with t.

iii.

B ASSOCIATED CONTENT
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iBioSim project file and PDF instructions for generating SBML
from SBOL in iBioSim. The iBioSim project file includes a
SBOL file that contains the module and component definitions
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files generated from this SBOL file. This material is available
free of charge via the Internet at http://pubs.acs.org.
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